
Ordinary Least Squares (Linear Least Squares)

A model that is linear in its coefficients, θj, is given by y(x) = θ1f1(x) + θ2f2(x) + ....
For a model with M linear coefficients this can be written as

y(x) =
M∑
j=1

θjfj(x)

At xi this becomes

y(xi) =
M∑
j=1

θjfj(xi)

There are N data points corresponding to observations made at x1...xN , so lets define a
’design matrix’ X of size N ×M such that Xi,j = fj(xi). Now

y(xi) =
M∑
j=1

θjXi,j

If the data is normally distributed with a known variance of σ2 then the Likelihood is

L(θ) = P (~y|θ) =
N∏
i=1
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∑M
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θjXi,j)
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Finding maximum of this expression (by varying θ) is the same as finding the minimum of
the negative, which is equivalent to finding the minimum of the negative of the log of the
expression. So look for the minimum of:

S(θ) ≡
N∑
i=1

(yi −
M∑
j

θjXi,j)
2

Note that constant terms are dropped since we only care about where the minimum is found,
not its value. The minimum is found when for each k,

∂S

∂θk
= 0

which written out is:
∂S

∂θk
=

N∑
i=1

(yi −
M∑
j=1

θjXi,j)Xi,k = 0

Rearranging gives:

N∑
i=1

yiXi,k =
N∑
i=1

M∑
j=1

θjXi,jXi,k

Since y is N × 1, and X is N ×M , the left side looks like (kth row of X′) × y. Since θ is
M × 1, the right side looks like (kth row of X′)× ( (jth row of X)× θ).
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After the summations, the only remaining index is the coefficient index. We can write
this so it relates two vectors of size M × 1 by writing:

X′y = X′Xθ

And finally, to solve for θ,

θ̂ = (X′X)−1X′y

Note the ’hat’ above θ means the estimated θ.
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